
129

Operational Semantics of Goal Models in Adaptive Agents

Mirko Morandini
FBK-IRST

Via Sommarive 18
I-38100 Trento, Italy

morandini@fbk.eu

Loris Penserini
University of Utrecht

Padualaan 14, De Uithof
Utrecht, The Netherlands

loris@cs.uu.nl

Anna Perini
FBK-IRST

Via Sommarive 18
I-38100 Trento, Italy

perini@fbk.eu

ABSTRACT

Several agent-oriented software engineering methodologies
address the emerging challenges posed by the increasing
need of adaptive software. A common denominator of such
methodologies is the paramount importance of the concept
of goal model in order to understand the requirements of a
software system. Goal models consist of goal graphs rep-
resenting AND/OR-decomposition of abstract goals down
to operationalisable leaf-level goals. Goal models are used
primarily in the earlier phases of software engineering, for
social modelling, requirements elicitation and analysis, to
concretise abstract objectives, to detail them and to cap-
ture alternatives for their satisfaction.

Although various agent programming languages incorpo-
rate the notion of (leaf-level) goal as a language construct,
none of them natively support the definition of goal mod-
els. However, the semantic gap between goal models used
at design-time and the concept of goal used at implementa-
tion and execution time represent a limitation especially in
the development of self-adaptive and fault-tolerant systems.
In such systems, design-time knowledge on goals and vari-
ability becomes relevant at run-time, to take autonomous
decisions for achieving high level objectives correctly.

Recently, unifying operational semantics for (leaf) goals
have been proposed [15]. We extend this work to define an
operational semantics for the behaviour of goals in goal mod-
els, maintaining the flexibility of using different goal types
and conditions. We use a simple example to illustrate how
the proposed approach effectively deals with the semantic
gap between design-time goal models and run-time agent
implementations.

Categories and Subject Descriptors

I.2.11 [Artificial intelligence]: Distributed Artificial Intel-
ligence—Intelligent agents, Languages and structures; D.2.1
[Software Engineering]: Requirements/Specifications;
D.3.1 [Programming Languages]: Formal Definitions
and Theory

General Terms

Theory, Design, Languages

Cite as: Operational Semantics of Goal Models in Adaptive Agents,
Mirko Morandini, Loris Penserini and Anna Perini, Proc. of 8th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–
15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Keywords

Goals, Goal Models, Agent Programming, Formal Semantics

1. INTRODUCTION
The concept of goal, defined as a state of affairs that a

system wants to achieve or an action that it aims to perform,
has received considerable attention in AI in the past, for
instance in distributed reasoning [9] and planning [8]. In
agent systems, this concept paved the way for defining agent
proactivity and autonomy.

Goals have also been recognized to be a powerful abstrac-
tion in requirements analysis to capture users’ needs and
to analyse them with the aim of deriving appropriate re-
quirements for the system-to-be (e.g. [3]). Goal-Oriented
Requirements Engineering (GORE) provides modelling lan-
guages to represent and analyse users’ goals that may be
delegated to the system-to-be and progressively refined by
AND/OR-decomposition to sub-goals to concretise system
requirements (and ultimately system behaviour). The re-
sulting AND/OR graphs are called goal models (GMs).

At design time, a GM represents the purposes behind a
system [2, 1] making the dependencies between system goals
and stakeholders’ goals explicit. Especially for the develop-
ment of adaptive and fault-tolerant systems, this knowledge
is of high importance since typical design decisions and vari-
ability are shifted to run-time to gain in autonomy yet re-
specting high level goals and requirements. Also, goal OR-
decomposition offers an effective way to support the evalu-
ation of alternative solutions (possible system behaviours),
offering a key analysis method in high-variability design [13].

In this paper we propose formal semantics for goal model
execution that build upon the semantics proposed by Riems-
dijk et al. [15] for leaf-level goals. We define an abstract ar-
chitecture and instantiate it, defining a precise run-time be-
haviour for the achievement of higher level (non-leaf) goals
through the achievement of their sub-goals and the satis-
faction of their achievement conditions. We formalise goal
decomposition in AND and in OR, with the three main goal
types achieve-goal, maintain-goal, and perform-goal.

The context of our work is that of engineering self-
adaptive systems –that is, systems able to autonomously
achieve the objectives they have been designed for, in a dy-
namic environment– adapting their behaviour to different
circumstances. We adopt an agent-oriented approach that
incorporates GORE techniques to model users’ needs and
system requirements in terms of goal models and try to push
the adoption of goal models further into the system develop-
ment and implementation process. That is, we propose to

Cite as: Operational Semantics of Goal Models in Adaptive Agents,
Mirko Morandini, Loris Penserini, Anna Perini, Proc. of 8th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2009), Decker,
Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest,
Hungary, pp. 129–136
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

130

implement the system-to-be through software agents that
have knowledge of and behave according to their own goal
model, defined at design-time.

Having knowledge of its goal model, a software agent can
act according to it, exploring alternatives at failures or to
adapt to changed circumstances. Also an enrichment of this
model, e.g. by run-time learning, would be possible, always
retaining traceability to the design time.

A tool-supported approach for the generation of code for
goal-directed, self-adaptive systems from goal models has
been proposed in previous work [11]. A main limitation
pointed out by this work is the gap between the seman-
tics of goal models defined at design time and the execution
semantics of current agent programming languages. The op-
erational semantics for goal models illustrated in this paper
give a formal definition of the behaviour expected from a GM
modelled at design time by defining its run-time behaviour.
Having operational semantics for goal models at run-time
will also provide the basis for an effective monitoring of the
system behaviour, a key element for self-adaptivity [7].

The paper is structured as follows. Section 2 discusses
related work. Section 3 gives an intuitive idea of goal model
semantics at run-time with the help of a simple cleaner agent
example, while Section 4 introduces the formalisation of our
goal model semantics. Section 5 applies these semantics to
the example. Finally, Section 6 gives conclusions and points
out future work directions.

2. RELATED WORK
As our approach deals with the existing gap between

the design of goal models –used by requirements and soft-
ware engineering methodologies– and the run-time goals and
plans used by agent oriented programming languages, we
provide two main streams of related work.

2.1 Goal models for software requirements
and design

Goal-oriented requirements engineering frameworks intro-
duce goal models to derive software requirements from the
analysis of the alternative ways to met the users’ goals.
Among the established approaches we mention KAOS [3]
and i* [17].

In KAOS, a GM is composed of goals arranged in
AND/OR graphs where a goal node can have several par-
ent nodes as it can occur in several decompositions (called
reductions). In the KAOS metamodel, the reduction meta-
relationship allows for goal refinement and for modelling
alternative ways of achieving goals. Goals are defined in-
formally (abstract) and need then to be refined into more
formal (concrete) ones until reaching subgoals (leaf-goals)
that can be operationalised through constraints, formulated
in terms of objects and actions. The semantics of the GM
are described by a first order temporal logic that allows for
a formal verification of requirements.

The agent-oriented methodology Tropos [1] borrows mod-
elling and analysis techniques from these frameworks and
integrates them with an agent-oriented paradigm. A core
activity along the modelling process is conceptual modelling,
which is performed by using a language that offers concepts
such as those of actor, goal, plan, resource, capability, and
social dependency between actors, and a graphical notation
to model these concepts in actor and goal diagrams. A Tro-
pos GM (see Figure 1 for an example) is represented as a

forest of AND/OR-decomposed goals along with lateral con-
tributions and dependency relations to other actors. Addi-
tionally, a GM contains means-ends relationships that define
the plans that can be the means to satisfy a goals. The Tro-
pos GM can be formalised by the Formal Tropos language
(FT), based on linear temporal logic, to define the allowed
states of a system. However, in FT, goal decomposition is
not natively supported but has to be modelled by binding
goal achievement to subgoal success. Both KAOS and FT
propose a semantics for GMs but with a different purpose
with respect to our work, since they focus on formal verifi-
cation of requirements specifications.

Liaskos et al. [10] propose a formal language to specify
stakeholder preferences and to reason about them with the
purpose of supporting the analysis of behaviour variability
at the requirements level. Here, GMs have been found to be
effective to study stakeholders’ goals and alternative ways to
fulfil them, that is, to characterize variability in the problem
space. Variability in the solution space is then modelled in
terms of features-based specification, following product-line
engineering approaches. Nevertheless, it has been left as
future work to show how goal model variability at require-
ments level influences the run-time behaviour of a software
system.

2.2 Goals at run-time
Concerning the semantics of goals and related concepts

in programming languages, we shall mention the following
works. Padgham and Lambrix [12] propose a formal rela-
tionship between capabilities and BDI concepts — i.e., be-
liefs, goals and intentions. This work origins in the philo-
sophical idea that ‘can’ implies both ability and opportunity.

In [16], the authors propose an interesting study about
procedural and declarative goals in agent programming lan-
guages, focusing on a declarative notion of subgoals within
the 3APL agent programming language. Such an approach
for modelling subgoals endowing achievement conditions is
also adopted in other agent programmed languages, such
as Jadex [14], where procedural plans can start and control
the lifetime of new goals. Despite such languages can im-
plement simple AND-decomposition, they do not natively
support reasoning on the knowledge level, provided by the
GM semantics.

The unifying framework proposed in [15] is important in
order to give a solid definition of goal, taking advantage of
several contributions and perspectives that range from soft-
ware engineering methodologies to agent programming lan-
guages. Here, the main idea has been to propose an abstract
architecture for the goal life-cycle along with an operational
semantics for the principal goal types. We build our op-
erational semantics for goals in goal models on top of this
work that considers only “leaf goals”, that is, goals directly
operationalisable by plans.

3. THE GOAL MODEL AT RUNTIME
In this work we cover GMs that consist of multiple

AND/OR-decomposed root goals, as in the Tropos method-
ology. These GMs embed some extensions in respect to the
traditional one proposed in literature [1, 3, 10]: goals can
be enriched with information on their dynamic behaviour
at run-time by defining goal types and conditions. Several
types of goals have been defined and used in agent-oriented
programming languages.

Mirko Morandini, Loris Penserini, Anna Perini • Operational Semantics of Goal Models in Adaptive Agents

131

In this paper we consider the three goal types achieve, per-
form and maintain, described in [4]. Achieve-goals are char-
acterized by an achievement condition that specifies when
a certain state of affairs is reached. The satisfaction of the
goal can be attempted several times till this condition holds.
Moreover, a failure condition can terminate goal achieve-
ment, defining it as failed. Perform-goals execute some ac-
tions, finally reporting their success or failure without eval-
uating conditions. Last, maintain-goals try to maintain a
certain state of affairs. In literature, different types of se-
mantics have been attributed to maintain-goals. An agent
can act reactively or proactively to maintain a state [5]. In
the first case (reactive maintain-goals), it starts taking ac-
tion when a particular state is no longer maintained, while
in the second case (proactive maintain-goals) it tries to act
to prevent the failure of the maintenance condition.

The implementation of proactive maintenance goals, al-
though suitable for formal verification [6], requires predictive
reasoning mechanisms, which are not easily representable
through an operational formalisation, and in procedural,
event-guided agent languages in general [15].

In this work we focus on reactive maintain-goals, which are
available on most agent platforms. Such goals are activated
each time their maintenance condition is not satisfied and
suspended if the condition holds. Proactive maintain goals
would theoretically also be modellable in our framework but
ask for a predictive evaluation of maintain-conditions.

3.1 An example: the Cleaner Agent
To illustrate how a goal model captures the intended run-

time behaviour, we refer to a very simple cleaner robot sce-
nario, which can be found in several variations in artificial
intelligence and multi-agent systems fields.

The Cleaner Agent is modelled in an extended version of
the Tropos modelling language and represents the control
software for an autonomous robot that could ideally be em-
ployed in an office building (Figure 1).

The achieve-goal RoomClean has an achievement condition
“room clean at the end of the day” and is OR-decomposed
into the two alternatives DryCleaning and WetCleaning

(both are perform-goals). These “leaf-level” goals are op-
erationalised by plans that give different contribution to the
quality requirement efficiency, modelled as a softgoal.

Supposing both alternative subgoals are applicable in the
current context, the agent will pursue the subgoal that max-
imizes contribution to its softgoal efficiency. The seman-
tics of the goal model now allow designers to characterize
various run-time behaviours of an agent, like the ones shown
in the following scenarios.

Scenario 1. The agent achieved DryCleaning by using
a broom, but due to some stubborn dirt, the achievement
condition of the main goal RoomClean is not yet satisfied.
Thus, the agent should retry the other available alternative,
the goal WetCleaning, hoping that after its achievement the
main goal will be achieved.

Scenario 2. Suppose that the agent is cleaning the room
with a mop, performing the goal WetCleaning, and runs
out of water. If all the dirty parts of the floor were already
cleaned (and the agent can sense this), the achievement con-
dition of RoomClean is satisfied and thus, after all, the top
goal succeeds.

Interesting considerations arise by modelling these scenar-
ios. The extended goal model allows designers to character-

Figure 1: Fragment of a goal model for the Cleaner
Agent example.

ize and focus on the agent’s knowledge in terms of goals and
their relationships, still maintaining a strong connection be-
tween leaf goals and plans as means to achieve them. Mod-
elling different goal types along with specific conditions re-
sults in various possible agent behaviours. Such behaviours
adhere not only to the semantics of goal AND/OR decom-
position but are also driven by the nature of goal types along
with their satisfaction conditions.

4. GOAL MODEL SEMANTICS
In this section, we provide operational semantics to deal

with non-leaf goals in a GM and we instantiate them for
each goal type, illustrating how it naturally adheres both
to the semantics of run-time goals (as in agent languages
such as JACK, Jadex, and 3APL) and to the interpretation
given to hierarchical goal decomposition in GMs of agent-
oriented software engineering methodologies like Tropos [1]
and KAOS [3].

We follow and build on the formalisation used in [15],
based on the idea to have an abstract goal architecture that
allows for different instances to model the desired run-time
behaviour of various types of goals.

Our architecture defines the different states of a goal
in the run-time goal satisfaction process and the opera-
tional semantics of goal satisfaction for AND- and OR-
decompositions in terms of transition rules.

4.1 Abstract semantics for AND/OR decom-
position

In the abstract architecture proposed by [15], once
adopted, (leaf) goals can have two different states: sus-
pended and active. In the active state planning and execu-
tion of plans take place. The satisfaction process for non-leaf
goals is more complex, essentially because two facts have to
be assessed: the satisfaction of subgoals of AND/OR decom-
positions and the satisfaction of the conditions defined for
a particular goal type. The flexible interplay between these
two aspects calls for additional goal states to explicitly rep-
resent failure and success of goal achievement.

We define an abstract architecture for non-leaf goals, that
includes the following goal states S = {suspended (S), active-
deliberate (AD), active-undefined (AU), active-success (AS),
active-failure (AF)}. In the following we will define rules
for the transitions between these states, labelled as adopt,

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

132

activate, suspend, deliberate, subgoal-achieve, fail, succeed,
retry, reactivate, drop-failure, and drop-success in Figure 2.

Some of these transitions are governed by transition ac-
tions (one of Activate, Suspend, Fail, Succeed, Retry,
Reactivate, DropFailure, DropSuccess) which are cor-
related to specific transition conditions. In Section 4.3, these
conditions will be instantiated to obtain the desired be-
haviour for the different goal types, “enabling” the proper
actions.

The state of an agent is characterised by a tuple 〈B, G〉,
where B is its actual set of beliefs (the belief base), which
contains a set of beliefs and known facts about the surround-
ing world, perceptions, messages and its internal state. G is
the set of goals g1 . . . gn, the agent actually has to pursue,
i.e. the adopted goals.

A generic non-leaf goal at run-time is defined as
g(C, E, s, Γ), where s ∈ S is the actual goal state and
Γ is a list of goals that results from a deliberation ac-
tivity deliberate(g, B), returning applicable subgoals for
g: Γ = {γ1, . . . , γn}. C and E are tuples of the form
〈condition, action〉, where action is one of the transition ac-
tions previously defined and condition is evaluated in B. A
Condition c in E will be evaluated in B when the set of
adopted subgoals Γ is empty, a condition in C when Γ �= ∅.
B |= c denotes conditions true with respect to the actual
beliefs.

4.2 Transition rules
The operational semantics for our abstract architecture

are defined by a set of inference rules that define possible
state transitions. Each rule is specified as

L

R [rule-name]

where R represents a possible state transition of the system
under the set of conditions L.

Following [15], we define how single goals evolve, assum-
ing that the goals in G, which the agent has to pursue, are
already in the state Suspended. New goals can be added to
G upon request from outside, triggered by a creation (adop-
tion) condition or as subgoals during goal achievement. Goal
adoption is not further discussed here for space reasons1.

In the following, we define and explain the transition rules
for both AND- and OR-decomposed goals.

4.2.1 Goal activation
Goal activation is guided by a condition c. The following

two transition rules, [activateC] and [activateE], define the
state transition from Suspended to AD, depending on a
condition associated to the action Activate. The naming
includes the transition labels in Figure 2; “E”and“C”denote
that the transition is applied for an empty or non-empty set
Γ, respectively. Unless otherwise defined, all rules are used
for both AND- and OR-decomposition.

Γ �= ∅ 〈c,Activate〉 ∈ C B |= c

〈B, g(C, E, Suspended, Γ)〉 → 〈B, g(C, E, AD, Γ)〉
[activateC]

1In brief, to guarantee that the control of subgoals is left
to the parent goals in a goal tree, external creation requests
(in an agent architecture typically messages) and creation
conditions should be allowed only for root goals.

〈c,Activate〉 ∈ E B |= c

〈B, g(C, E, Suspended, ∅)〉 → 〈B, g(C, E, AD, ∅)〉
[activateE]

4.2.2 Subgoal achievement
The first step in non-leaf goal achievement consists in re-

vealing its subgoals. For this, the function deliberate returns
a list Γ of subgoals to satisfy, while the goal state changes
from AD to AU . In its simplest form, the deliberation func-
tion returns the whole set of subgoals, but also complex
algorithms for subgoal discovery could be implemented. No
deliberation takes place in the case that Γ �= ∅2.

〈B, g(C, E, AD, ∅)〉 → 〈B, g(C, E, AU, deliberate(g, B))〉
[deliberateE]

Γ �= ∅
〈B, g(C, E, AD, Γ)〉 → 〈B, g(C, E, AU, Γ)〉 [deliberateC]

At this point, subgoal adoption (and thus, eventu-
ally, their achievement) can take place. AND- and OR-
decomposed goals have different achievement semantics. In-
tuitively, the goal remains in the undefined state AU as long
as the result of subgoal achievement is uncertain. Thus, an
AND-decomposed goal remains in AU until one subgoal fails
(rule [AND:subg-achieve]), in which case it will change to
the ‘provisional’ failure state AF [AND:subg-fail]. When all
subgoals are pursued (Γ = ∅) and the goal is still in state
AD, applying [AND:goal-succeed] it will transit to the ‘pro-
visional’ success state AS3.

Referring to OR-decomposition, a goal transits to AS at
first success of a subgoal and to AF if all subgoals fail.

We define that each instance of a subgoal γ updates
the belief base with success(γ) or failure(γ), depending
if it was achieved or not. Accordingly, our formalisation
provides this information to the belief base when a goal
is dropped. To ensure that transitions triggered by true
conditions have precedence over adopting a new subgoal,
the next four transition rules also need the precondition
¬∃〈c, a〉 ∈ C . (B |= c) ∧ a ∈ {Fail, Succeed}

γi ∈ Γ 〈B, adopt(G, γi)〉 → B′ B′ |= success(γi)

〈B, g(C, E, AU, Γ)〉 → 〈B′, g(C, E, AU, Γ \ {γi})〉
[AND:subg-achieve]

γi ∈ Γ 〈B, adopt(G, γi)〉 → B′ B′ |= failure(γi)

〈B, g(C, E, AU, Γ)〉 → 〈B′, g(C, E, AF, Γ \ {γi})〉
[AND:subg-fail]

γi ∈ Γ 〈B, adopt(G, γi)〉 → B′ B′ |= failure(γi)

〈B, g(C, E, AU, Γ)〉 → 〈B′, g(C, E, AU, Γ \ {γi})〉
[OR:subg-achieve]

2This particular behaviour would be required for temporal
goal suspension, which is not further detailed here.
3‘provisional’ for the reason that it is not sure if a goal in
these states is dropped with failure/success, because this de-
pends also on various achievement and failure conditions and
on an eventual process repetition, whose formal semantics
are defined later on.

Mirko Morandini, Loris Penserini, Anna Perini • Operational Semantics of Goal Models in Adaptive Agents

133

Figure 2: Possible states and transitions in the abstract architecture for non-leaf goals in goal models.

γi ∈ Γ 〈B, adopt(G, γi)〉 → B′ B′ |= success(γi)

〈B, g(C, E, AU, Γ)〉 → 〈B′, g(C, E, AS, Γ \ {γi})〉
[OR:subg-succeed]

In these four rules we introduced the function adopt(G, g)
to define adoption of a subgoal, that is, adding the (sub)goal
g to the goal base G, in order to start its achievement pro-
cess. Eventually, this will result in a new belief B′. The next
transition rule defines how to satisfy the main precondition
of the former four rules, the transition from 〈B, adopt(G, γ)〉
to B′, that is, adopting the subgoal γi in order to start its
achievement process, and waiting until γi is dropped:

adopt(G, γi) → G ∪ {γi} 〈B, G ∪ {γi}〉 → 〈B′, G〉
〈B, adopt(G, γi)〉 → 〈B′, G〉

where the function disp(G, γi) returns G∪{γi}. The new
belief B′ is the result of the application of transitions for
the satisfaction of the goal γi, that concludes with some
transition rule that drops γi from G.

Subgoals that are themselves decomposed to non-leaf
goals, will follow the semantics defined in this work. When
they are dropped (applying [DropSuccess] or [DropFailure],
defined later in this section) the agent’s belief base is always
updated with success(g) or failed(g), where g denotes an
unique identifier of a goal instance. In the case that the sub-
goals are leaf goals, they will be instantiated for example ac-
cording to Riemsdijk’s semantics [15]. We require that also
these goals annotate their success or failure in the agent’s
belief base.

Now we define what happens if a goal is still in the state
AD, but its subgoal list Γ is empty. The following rules
define that a goal, if it is AND-decomposed and still in AD
(thus, no subgoal failed), passes to the provisional success
state AS. Conversely, an OR-decomposed goal fails if none
of its subgoals succeeded:

¬∃〈c,Fail〉 ∈ C.(B |= c)

〈B, g(C, E, AU, ∅)〉 → 〈B, g(C, E, AS, ∅)〉
[AND:subg-succeed]

¬∃〈c,Succeed〉 ∈ C.(B |= c)

〈B, g(C, E, AU, ∅)〉 → 〈B, g(C, E, AF, ∅)〉 [OR:subg-fail]

4.2.3 Success and failure triggered by conditions
The following rules define the possibility to transit to the

states AS and AF depending on conditions related to the
actions Succeed and Fail.

Satisfied success and failure conditions lead from AU to
the states AS and AF , respectively. In the case that both
conditions are true, failure conditions have precedence.

Moreover, two of these rules also consider transitions from
AS to AF and vice-versa, respectively, limited to the case
that Γ �= ∅. The transition AF → AS will be triggered only
if a subgoal of an AND-decomposed achieve-goal fails, but
its achievement condition holds. Conversely, the transition
AS → AF is used if in an OR-decomposed goal a subgoal
succeeds, but the condition associated to the action Fail is
true. In these two rules, X ∈ {AU, AS}.

Γ �= ∅
¬∃〈d,Fail〉 ∈ C.(B |= d) 〈c,Succeed〉 ∈ C B |= c

〈B, g(C, E,X, Γ)〉 → 〈B, g(C, E, AS, Γ)〉
[cond-succeedC]

Γ �= ∅ 〈c,Fail〉 ∈ C B |= c

〈B, g(C, E,X, Γ)〉 → 〈B, g(C, E, AF, Γ)〉 [cond-failC]

¬∃〈d,Fail〉 ∈ C.(B |= d) 〈c,Succeed〉 ∈ E B |= c

〈B, g(C, E, AU, ∅)〉 → 〈B, g(C, E, AS, ∅)〉
[cond-succeedE]

〈c,Fail〉 ∈ E B |= c

〈B, g(C, E, AU, ∅)〉 → 〈B, g(C, E, AF, ∅)〉 [cond-failE]

4.2.4 Goal dropping triggered by conditions
The following transition rules define when to drop a goal

from the goal base G. When dropping a goal from the state
AS, the fact success(g) is added to the agent’s belief. Drop-
ping it from AF , failed(g) is added.

Γ �= ∅
g(C, E, AS, Γ) ∈ G 〈c,DropSuccess〉 ∈ C B |= c

〈B, G〉 → 〈B ∪ success(g), G \ {g(C, E, AS, Γ)}〉
[drop-successC]

g(C, E, AS, ∅) ∈ G 〈c,DropSuccess〉 ∈ E B |= c

〈B, G〉 → 〈B ∪ success(g), G \ {g(C, E, AS, ∅)}〉
[drop-successE]

Γ �= ∅
g(C, E, AF, Γ) ∈ G 〈c,DropFailure〉 ∈ C B |= c

〈B, G〉 → 〈B ∪ failed(g), G \ {g(C, E, AF, Γ)}〉
[drop-failureC]

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

134

g(C, E, AF, ∅) ∈ G 〈c,DropFailure〉 ∈ E B |= c

〈B, G〉 → 〈B ∪ failed(g), G \ {g(C, E, AF, ∅)}〉
[drop-failureE]

4.2.5 Reactivation, Suspension, and Retry
Goal achievement might not always be straight forward.

To avoid error propagation, often, a failure-avoiding be-
haviour will be desired. Moreover, some goals will require
permanent maintenance of some state of affairs. Thus, we
introduce transition rules guided by conditions and used to
backtrack in the goal achievement process, either from the
success or the failure state.

The following two rules define how to restart the goal
achievement process, including subgoal deliberation, when
in the state AF. Remaining subgoals in Γ are deleted. Such
a transition is needed to repeat goal achievement if subgoal
achievement failed and goal failure should be avoided. It is
worth noticing that, if more transition rules are applicable
at the same time and no rule is more specific than the others,
precedence to the application of transition rules is given by
the order of definition of the conditions at the instantiation
of a goal.

Γ �= ∅ 〈c,Reactivate〉 ∈ C B |= c

〈B, g(C, E, AF, Γ)〉 → 〈B, g(C, E, AD, ∅)〉 [reactivateC]

〈c,Reactivate〉 ∈ E B |= c

〈B, g(C, E, AF, ∅)〉 → 〈B, g(C, E, AD, ∅)〉 [reactivateE]

Similar rules are needed for goal suspension after a suc-
cessful goal execution (this is typically needed for maintain-
goals). The list of dispatched subgoals is emptied, thus such
transitions are not suitable for modelling context conditions,
which should temporary suspend a goal and subsequently
reactivate it, resuming from the previous state.

Γ �= ∅ 〈c,Suspend〉 ∈ C B |= c

〈B, g(C, E, AS, Γ)〉 → 〈B, g(C, E, Suspended, ∅)〉
[suspendC]

〈c,Suspend〉 ∈ E B |= c

〈B, g(C, E, AS, ∅)〉 → 〈B, g(C, E, Suspended, ∅)〉
[suspendE]

The last rule applies only to goals with a non-empty sub-
goal list Γ. It backtracks from AS to the undefined state
AD, where goal achievement can be retried, trying with the
remaining subgoals in Γ. This transition can be applied if an
OR-decomposed goal succeeds referring to the achievement
of one of its subgoals but the goal’s achievement conditions
are not satisfied:

Γ �= ∅ 〈c,Retry〉 ∈ C B |= c

〈B, g(C, E, AS, Γ)〉 → 〈B, g(C, E, AU, Γ)〉 [retryC]

4.3 Instantiation of the abstract architecture
The abstract architecture for non-leaf goals in GMs, with

its different actions and conditions that drive and guide the
goal satisfaction process, is now adapted to the behaviour

needed for the various types of goals and the interplay of
their achievement and failure conditions with the subgoal
achievement process. In the following, we instantiate the
architecture giving precise semantics for the most signifi-
cant goal types: perform-goals, achieve-goals, and (reactive)
maintain-goals, as introduced in Section 3.

4.3.1 Perform-goals
Perform-goals are available in most agent languages, to

execute plans without demanding that they must reach some
particular state [4].

In a goal model, we associate the following semantics to
a perform-goal: depending on the decomposition type, all
(for AND) or at least one (for OR) of the subgoals have to
be achieved to achieve the goal. The following instance of
our abstract architecture defines a simple perform-goal with
no explicit conditions, that fails if the subgoals cannot be
achieved at the first try:

P ≡ g(E, C), with E = C = {〈true,Activate〉,
〈true,DropFailure〉, 〈true,DropSuccess〉}

Alternative run-time semantics associated to perform
goals define that failure has to be avoided and thus
goal achievement has to be restarted if the goal enters a
failure state (also called recurrent or retry-perform goals
in literature). This can be realised by replacing, in
both E and C, the condition 〈true,DropFailure〉 with
〈true,Reactivate〉. In this interpretation, also failure con-
ditions can be needed. In this paper, failure conditions will
be introduced later for achieve-goals.

4.3.2 Achieve-goals
In general, achieve-goals have a success condition (or

achievement condition) s that has to be satisfied, and usu-
ally also a failure condition (or drop condition) f . Only
these two conditions guide the dropping of an achieve-goal
from the goal base, regardless of the satisfaction of subgoals.
For example, if all subgoals fail, but the goal success con-
dition is satisfied, then the goal is dropped with success.
Moreover, we define that the success and failure conditions
should be tested not only at the end, but also during subgoal
achievement.

The achieve-goal can also have different behaviours to
manage failure: if the success condition is still not met af-
ter the subgoals are processed, the goal can a) restart the
achievement process or b) fail completely.

Moreover, adding the condition 〈¬s,Retry〉 to the set C
of conditions tested if Γ �= ∅, we can achieve the failure-
preventing behaviour shown in the example in Section 5,
that is, for failed OR-decompositions, goal achievement is
restarted with the remaining subgoals.

The following instantiation models the behaviour a):

A(s, f) ≡ g(E, C), with E = H ∪ {〈¬s ∨ f,Fail〉}
and C = H ∪ {〈f,Fail〉, 〈¬s,Retry〉}

with the following set of conditions H, included in both E
and C:

H = {〈true,Activate〉, 〈d,DropFailure〉, 〈s,Succeed〉,
〈s,DropSuccess〉, 〈¬s,Reactivate〉}

Mirko Morandini, Loris Penserini, Anna Perini • Operational Semantics of Goal Models in Adaptive Agents

135

Behaviour b) can be obtained from the previous one re-
placing 〈¬s,Reactivate〉 with 〈¬s,DropFailure〉.
4.3.3 Maintain-goals

As discussed in Section 3, in this paper we limit to reactive
maintain-goals, that are endowed with a maintenance con-
dition m and in most languages also with a drop condition
d to remove the goal from the list of goals to pursue [15].

Intuitively, maintain-goals try to maintain a certain con-
dition true and never end their life-cycle, unless they are
explicitly dropped from the set of adopted goals (that is,
from the set of goals the agent actively pursues at a certain
moment). The transitions correspond to the ones in achieve-
goals, but the goal is suspended if m is satisfied and dropped
only if d is true:

M(m, d) ≡ g(E, C), with E = H ∪ {〈¬m ∨ d,Fail〉}
and C = H ∪ {〈d,Fail〉, 〈¬m,Retry〉}, where

H = {〈¬m,Activate〉, 〈d,DropFailure〉, 〈m,Succeed〉,
〈m,Suspend〉, 〈¬m,Reactivate〉}

Some definitions of maintain-goal include also a target
condition. Having both a maintain- and a target condition,
the goal is activated each time the maintain-condition is vi-
olated, while it is suspended only if the target condition is
satisfied. These property allows for a behaviour with a hys-
teresis in goal activation, preventing unwanted continuous
switching between activation and suspension. For example,
if the room temperature has to be maintained at 20 ◦C, each
time the heating is turned on, it should heat till 22 ◦C. To
obtain this behaviour, the goal architecture has to be instan-
tiated as M(m, t, d), with all occurrences of m in M(m, d)
changed to t, except for 〈¬m,Activate〉, .

4.4 Discussion: goal types in goal models
Endowing goals in GMs with the semantics defined in

this section allows designers for modelling a wide range of
complex agent’s behaviours by combining goal AND/OR-
decomposition with different goal types and conditions.
However, not all combinations are meaningful, either for
modelling or for implementation purposes.

For example, in using the refinement process for abstract
goals within a goal model, a maintain-goal can be decom-
posed either (a) to more specific maintain-goals, or (b) by
defining the goals to achieve or perform, in order to main-
tain the required state. However, at run-time, maintain-
goals have the property that they are not dropped when
they reach the desired state, but suspended, waiting for re-
activation. Thus, child goals of the type maintain would
never return a positive or negative outcome to their parent
goal, unless they are explicitly dropped.

For this reason, to achieve a predictable behaviour, we
set as –not necessarily minimal– restrictions to goal models
at run-time, that only the leaf-most maintain-goals should
be implemented and that decomposition of achieve- and
perform-goals to maintain-goals is not allowed.

Moreover, to obtain a comprehensible behaviour, achieve-
ment conditions for subgoals (individual subgoal conditions
in OR-decomposition, and the union of subgoal conditions in
AND-decomposition) should possibly be at least as strong as
the parent goal’s condition, although this might often not be
assured when working with informal languages in a complex

environment.

5. APPLICATION OF THE SEMANTICS
In this section we use the simple cleaner agent example

introduced in Section 3.1 (Figure 1) to illustrate the appli-
cation of the proposed operational semantics. We manually
execute some steps of this example, and show its run-time
behaviour.

We detail the satisfaction process for the goal RoomClean
(RC), with the achievement condition that the room has to
be clean (supposing the belief base will then contain the
predicate room.clean). The goal is OR-decomposed into two
goals WetCleaning (WC) and DryCleaning (DC), both goals
of type perform, and thus without specific achievement con-
dition. We suppose that the cleaner agent is working in a
room, but after a while it encounters some stubborn dirt that
cannot be completely removed by the broom (e.g., colour
spots after painting the walls). In this example we expect
the behaviour outlined in the scenarios in Section 3.1: the
cleaner first pursues DryCleaning, due to a higher contribu-
tion to the softgoal efficiency. Sweeping succeeds (plan
sweep), but the floor is still not clean and so the agent, to
avoid failure, also cleans using the mop (plan mop).

Figure 3: Possible life-cycle of the goal RoomClean in

the Cleaner Agent example.

We show a step-by step application of the proposed tran-
sition rules, instantiating the achieve-goal RoomClean with
the transition rules for an OR-decomposition. We apply the
set of conditions defined in Section 4.3 for achieve-goals of
the form A(s, f), with satisfaction condition s=room.clean
and without failure condition (f = false).

After the adoption of RoomClean, the condition
〈true,Activate〉 enables the application of the rule [acti-
vateE] and the goal passes from state S to state AD (2
in Figure 3). Then, with the rule [deliberateE], the state
changes to AU (3), and the function deliberate returns the
subgoals Γ = {DC, WC}. Now we expect that DC is adopted
and executed and returns with success. Notice that in this
paper we do not cope with the operational semantics for
subgoal prioritisation by softgoal contribution [13]. The rule
[OR:subg-succeed] now applies (4), as shown here:

disp(G, DC) → G ∪ {DC} 〈B, G ∪ {DC}〉 → 〈B
′
, G〉

〈B, disp(G, DC)〉 → 〈B
′
, G〉 B

′ |= success(DC)

〈B, g(C, E, AU, {DC, W C})〉 → 〈B
′
, g(C, E, AS, {W C})〉

The execution of DC can be derived by an application
of transition rules that end with a rule which models
success(DC) in B′.

Now, to apply a transition starting from the ‘provisional’
success state AS, the condition s has to be evaluated. As

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

136

just described, there are still some colour spots on the floor
and thus s is not satisfied. Therefore, the only true pre-
condition of a transition rule from AS is that of [retryC] :
〈¬s,Retry〉. So the goal state changes back to AU (5).
The only goal remaining in Γ, WC, will now be pursued.

We suppose that after having cleaned most of the floor,
this subgoal fails, because the robot runs out of water. How-
ever, the stubborn spots were removed, and thus the con-
dition s is satisfied. The rules [OR:subg-fail] and [cond-
succeedE] are now candidates for the next transition. Since
B |= s, only the latter can be applied and the goal state
changes again to AS (6). Finally, the rule [drop-successE]
can be applied (7), the goal is dropped and the predicate
success(RoomClean) is added to the agent’s beliefs.

With this simple example we can already observe that the
agent exhibits a failure-preventing behaviour, by means of
reasoning on the structure of its goal model.

6. CONCLUSIONS AND FUTURE WORK
In this paper we proposed and illustrated the interplay be-

tween (extended) goal models –conceived as graphs of goal
AND/OR decompositions– and run-time goal types along
with their achievement conditions. To deliver on this aim,
building upon the proposal by Riemsdijk et al. [15], we char-
acterized the behaviour of goals in goal models at run-time,
providing their operational semantics.

Goal models allow designers to characterize an agents’ be-
haviour in terms of (less and more concrete) goals and their
relationships. Maintaining these goal models at run-time
and defining how they guide the run-time behaviour, an
agent is able to use the information available in the models
as a means for run-time adaptivity and fault tolerance. How-
ever, the semantics proposed in this paper currently cover
only a subset of goal model concepts and relationships and
do not cope with the behaviour resulting from complex rea-
soning mechanisms, as available for goal adoption, optimisa-
tion, conflict resolution, learning or decision making. Also,
these semantics are not amenable for formal verification, e.g.
by model checking.

Up to our knowledge, currently no agent-oriented lan-
guage natively supports goal models at run-time. We are
working in parallel on a prototype implementation based on
the Jadex agent framework, adding a new layer of abstrac-
tion to support whole goal models at run-time, and complet-
ing a tool, called t2x, for an automatic mapping from Tropos
goal models to Jadex agent code [11].

Another important direction is to use the proposed se-
mantics to validate a goal-directed design and to test if the
run-time behaviour of an agent is compliant with its goal-
directed design. Moreover, we investigate on the possibility
to give to this software, that knows its goal model, the abil-
ity to enrich and modify this model at run-time, to achieve
an adaptive behaviour, learning from failures and collabora-
tion. Our vision is to give automated feedback from these
models to support the developer in improving the correspon-
dent design time models.

7. REFERENCES
[1] P. Bresciani, P. Giorgini, F. Giunchiglia,

J. Mylopoulos, and A. Perini. Tropos: An
Agent-Oriented Software Development Methodology.
Autonomous Agents and Multi-Agent Systems,
8(3):203–236, July 2004.

[2] C. Cheong and M. Winikoff. Hermes: Designing
Goal-Oriented Agent Interactions. In Proceedings of
the 6th Int. Workshop on Agent-Oriented Software
Engineering (AOSE-2005), 2005.

[3] A. Dardenne, A. van Lamsweerde, and S. Fickas.
Goal-directed requirements acquisition. In 6IWSSD:
Selected Papers of the Sixth International Workshop
on Software Specification and Design, pages 3–50,
Amsterdam, The Netherlands, The Netherlands, 1993.
Elsevier Science Publishers B. V.

[4] M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer.
Goal types in agent programming. In ECAI, pages
220–224, 2006.

[5] S. Duff, J. Harland, and J. Thangarajah. On
proactivity and maintenance goals. In 5th
International Conference on autonomous agents and
multiagent systems (AAMAS ’06), pages 1033–1040,
New York, NY, USA, 2006. ACM.

[6] A. Fuxman, M. Pistore, J. Mylopoulos, and
P. Traverso. Model checking early requirements
specifications in Tropos. In IEEE Int. Symposium on
Requirements Engineering, pages 174–181, Toronto
(CA), Aug. 2001. IEEE Computer Society.

[7] A. G. Ganek and T. A. Corbi. The dawning of the
autonomic computing era. IBM Systems Journal,
42(1):5–18, 2003.

[8] M. Ghallab, D. S. Nau, G. Malik, and P. Traverso.
Automated Planning: Theory and Practice. Elsevier,
2004.

[9] V. Lesser. A retrospective view of fa/c distributed
problem solving. Systems, Man and Cybernetics,
IEEE Transactions on, 21(6):1347–1362, 1991.

[10] S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, and
J. Mylopoulos. On goal-based variability acquisition
and analysis. In 14th IEEE Int. Conf. on
Requirements Engineering, Minneapolis, 2006.

[11] M. Morandini, L. Penserini, and A. Perini. Automated
mapping from goal models to self-adaptive systems. In
23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2008), pages
485–486, September 2008. Tool demo.

[12] L. Padgham and P. Lambrix. Formalizations of
Capabilities for Bdi-Agents. Autonomous Agents and
Multi-Agent Systems, 10:249–271, 2005.

[13] L. Penserini, A. Perini, A. Susi, and J. Mylopoulos.
High variability design for software agents: Extending
tropos. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 2(4), 2007.

[14] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex:
A bdi reasoning engine. In Multi-Agent Programming,
pages 149–174. Springer, USA, 9 2005. Book chapter.

[15] B. van Riemsdijk, M. Dastani, and M. Winikoff. Goals
in agent systems: A unifying framework. In
Proceedings of the 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS’08), pages
713–720. IFAAMAS, 2008.

[16] M. B. van Riemsdijk, M. Dastani, and J.-J. C. Meyer.
Subgoal semantics in agent programming. In EPIA,
pages 548–559, 2005.

[17] E. Yu. Modelling Strategic Relationships for Process
Reengineering. PhD thesis, University of Toronto,
Department of Computer Science, 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

